繁體
|
簡體
Sclub交友聊天~加入聊天室當版主
(檢舉)
分享
新浪微博
QQ空间
人人网
腾讯微博
Facebook
Google+
Plurk
Twitter
Line
标题:
[推理大揭秘]
ECC加密法
[打印本页]
作者:
柯南
时间:
2017-2-20 17:35
标题:
ECC加密法
ECC算法也是一个能同时用于加密和数字签名的算法,也易于理解和操作。同RSA算法是一样是非对称密码算法使用其中一个加密,用另一个才能解密。
公开密钥算法总是要基于一个数学上的难题。比如RSA 依据的是:给定两个素数p、q 很容易相乘得到n,而对n进行因式分解却相对困难。那椭圆曲线上有什么难题呢?
考虑如下等式 :
K=kG [其中 K,G为Ep(a,b)上的点,k为小于n(n是点G的阶)的整数]
不难发现,给定k和G,根据加法法则,计算K很容易;但给定K和G,求k就相对困难了。
这就是椭圆曲线加密算法采用的难题。我们把点G称为基点(base point),k(k
现在我们描述一个利用椭圆曲线进行加密通信的过程:
1、用户A选定一条椭圆曲线Ep(a,b),并取椭圆曲线上一点,作为基点G。
2、用户A选择一个私有密钥k,并生成公开密钥K=kG。
3、用户A将Ep(a,b)和点K,G传给用户B。
4、用户B接到信息后 ,将待传输的明文编码到Ep(a,b)上一点M(编码方法很多,这里不作讨论),并产生一个随机整数r(r<n)。
5、用户B计算点C1=M+rK;C2=rG。
6、用户B将C1、C2传给用户A。
7、用户A接到信息后,计算C1-kC2,结果就是点M。因为
C1-kC2=M+rK-k(rG)=M+rK-r(kG)=M
再对点M进行解码就可以得到明文。
ECC的功能比RSA强。而令人感兴趣的是点和点的过程,这也是其功能之来源。
欢迎光临 E漫—异想天开、天马行空的思维 (http://huankong.funbbs.me/)
Powered by Discuz! 7.2